The Automated Future Of Construction Safety


By Fernanda Leite, PhD, PE

Since the Occupational Safety and Health Act of 1970 placed the responsibility of construction safety on the employer, newly developed injury prevention strategies have led to dramatically decreased fatality and disability rates in the construction industry. Despite these improvements, however, construction remains the second most hazardous industry, representing 21.4 percent of U.S. workplace fatalities in 2015.

The Bureau of Labor statistics estimates that eliminating the “fatal four” leading causes of construction death — falling, being struck by an object, electrocution, and being caught in or between objects and machinery — could save 602 workers’ lives in America every year.

The key to eliminating these fatalities will be in innovative injury prevention practices such as virtual modeling and sensing to improve safety planning and management.

With the wide adoption of mobile computing in the architecture, engineering and construction (AEC) industries, we have entered an era rife with information and data, and where sensors and computers are playing increasingly important roles in project development. New technology in data management, sensing and visualization has changed much of how engineers design, build and maintain our infrastructure. Take Virtual Design and Construction (VDC) as an example: we can now build virtual models to enable better client communication, identification of potential design and construction issues and more effective quality control.

All of these technological advancements can be applied to improving safety protocols and, in many cases, the industry has made great strides. However, we’ve still got a long way to go.

Obstacles To Fully Integrated Safety Planning & Autonomous Monitoring

Lack of integration between construction and safety planning: Current safety planning approaches do not take temporal or spatial information into account. That is, they don’t consider when and where construction activities may increase hazards and require elevated safety controls. For example, low risk activities such as painting, landscaping or bricklaying may suddenly increase in risk if they occur at the same time and adjacent to an activity using heavy equipment such as earth movement with a bulldozer. To create more effective site-specific safety plans, it is important to integrate safety planning and project scheduling functions.

Insufficient sources for site-specific safety planning: While information technology-based approaches such as 3D Building Information Modeling (BIM) are widely used for project planning and monitoring, construction safety planning is still highly dependent on traditional sources such as 2D drawings, paper-based regulations and tacit information. Because these traditional methods yield more generalized renderings, current safety planning approaches limit the capability to identify and analyze hazards prior to construction, and could be improved with the integration of information technology.

Imperfections inherent in real-world sensor data: Autonomous jobsite safety monitoring applications are built on the assumption that the collected location data represent the exact situation, which might not be true due to erroneous data. For example, a sensor error of three feet on an open edge could mean the difference between falling or not. While we could correct for this by broadening the range of the sensor (so it alerts workers when they are farther away from the edge), it is important that these systems not sound too many false alarms, as that risks desensitizing workers. Therefore, the data in autonomous jobsite safety monitoring systems should be further perfected before it can be trusted for decision making.

Read more.

Source. Reproduced with permission.